[2009] ON BUCKLING COLLAPSE OF A FUSION-WELDED ALUMINUM-STIFFENED PLATE STRCUTURE: EXPERIMENTAL AND NUMERICAL STUDIES > Selected Papers

본문 바로가기

Selected Papers

[2009] ON BUCKLING COLLAPSE OF A FUSION-WELDED ALUMINUM-STIFFENED PLAT…

페이지 정보

Author Admin 작성일09-11-04 11:39 Hit81,218 Count Comments0 Count

본문

Proceedings of OMAE2009
28th International Conference on Offshore Mechanics and Arctic Engineering
31 May-5 June 2009, Honolulu, Hawaii

ON BUCKLING COLLAPSE OF A FUSION-WELDED ALUMINUM-STIFFENED PLATE STRCUTURE: EXPERIMENTAL AND NUMERICAL STUDIES

Author(s): J.K. Paik, B.J. Kim, J.M. Sohn, S.H. Kim, J.M. Jeong and J.S. Park

Abstract :
The primary objective of the present paper is to experimentally examine buckling collapse characteristics of fusion welded aluminum-stiffened plate structures under axial compression until and after the ultimate limit state is reached. The secondary objective of the paper is to study a nonlinear finite element method modeling technique for computing the ultimate strength behavior of welded aluminum structures. A set of aluminum-stiffened plate structures fabricated by gas metal arc welding (GMAW) is studied. The test structure is equivalent to a full scale deck structure of an 80m long high speed vessel. Plate part of the structures is made of 5383-H116 aluminum alloy while extruded stiffeners are made of 5083-H112 aluminum alloy. Welding induced initial imperfections such as plate initial deflection, column type global initial deflection of stiffeners, sideways initial distortion of stiffeners, welding residual stresses, and softening in the heat-affected zone are measured. The ANSYS nonlinear finite element method is employed for the numerical computations of the test structure’s ultimate strength behavior by a comparison with experimental data. Insights and conclusions developed from the present study are documented.

Comment List

There's no comments